Search results for " composite scaffold"
showing 5 items of 5 documents
Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defe…
2020
Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano- hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differen- tiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic…
Effect of Low-Intensity Pulsed Ultrasound on Osteogenic Human Mesenchymal Stem Cells Commitment in a New Bone Scaffold
2017
Purpose Bone tissue engineering is helpful in finding alternatives to overcome surgery limitations. Bone growth and repair are under the control of biochemical and mechanical signals; therefore, in recent years several approaches to improve bone regeneration have been evaluated. Osteo-inductive biomaterials, stem cells, specific growth factors and biophysical stimuli are among those. The aim of the present study was to evaluate if low-intensity pulsed ultrasound stimulation (LIPUS) treatment would improve the colonization of an MgHA/Coll hybrid composite scaffold by human mesenchymal stem cells (hMSCs) and their osteogenic differentiation. LIPUS stimulation was applied to hMSCs cultured on …
Scaffolds based on hyaluronan crosslinked with a polyaminoacid: Novel candidates for tissue engineering application
2008
New porous scaffolds, with a suitable hydrolytic and enzymatic degradation, useful for tissue engineering applications have been obtained by a carbodiimide mediated reaction between hyaluronan (HA) and a synthetic polymer with a polyaminoacid structure such as α,β-polyaspartylhydrazide (PAHy). Scaffolds with a different molar ratio between PAHy repeating units and HA repeating units have been prepared and characterized from a chemical and physicochemical point of view. Tests of indirect and direct cytotoxicity, cell adhesion, and spreading on these biomaterials have been performed by using murine L929 fibroblasts. The new biomaterials showed a good cell compatibility and ability to allow ce…
BIOGLASS® pre-treatment improves its integration in polymeric scaffolds
PLLA-BASED SCAFFOLDS FOR OSTEOCHONDRAL TISSUE REGENERATION VIA THERMALLY INDUCED PHASE SEPARATION TECHNIQUE
L’ingegneria tessutale (TE) è una scienza multidisciplinare che mira a progettare e sviluppare sostituti biologici per migliorare, riparare e/o sostituire i tessuti negli organismi umani. Sulla base della tipica triade dell’ingegneria tessutale è incentrato il primo capitolo Scaffold, Source and Signal; lo scaffold funge da struttura tridimensionale, le cellule rappresentano la source mentre il bioreattore fornisce gli adeguati segnali chimico/fisici. In questo lavoro di tesi sono stati presi in considerazione tutti e tre questi aspetti avendo come obiettivo la rigenerazione osteocondrale. La guarigione dei difetti osteocondrali, riguardanti le lesioni della cartilagine che si esten- dono f…